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SECTION 1

INTRODUCTION

Ionospheric disturbances have been observed following large,

low-altitude nuclear weapons tests conducted by the U.S.A. in 196212

the Soviet Union in 19613 and France in 19674. Close inspection of the

data reveals that there appear to be two types of waves: a wave which

propagates to at least several thousand kilometers from the hurst and

whose period depends on the observation point; a wave which propagates all

the way around the earth (possibly more than once) and whose period is

around 15 minutes. There was agreement very soon after the observations

were made that the ionospheric disturbances were due to a system of

acoustic gravity waves set up by the explosion.

The ionospheric observations inspired a substantial research

program on the subject of acoustic gravity waves s. During this effort

much was learned about the rather unusual features of the propagation of

such waves. Of particular importance was the classification6 of the waves

as either freely propagating (which can exist in any-stratified atmos-

phere) or ducted (which can exist only in an atmosphere with a certain

type of temperature structure); the earth's atmosphere is such as to

support both freely propagating and ducted types of waves.

In spite of the progress made in understanding acoustic gravity

waves the fundamental issues associated with the test data were never

resolved. In particular it was never determined what aspect of the explo-

sion is responsible for creating the gravity waves or what type of wave

(ducted or freely propagating) was most important for producing the iono-

spheric disturbances. The most commonly suggested source mechanisms were
the blast wave and motions associated with the rising fireball. 3'9 More



recently we have suggested that the heated region above 100 km altitude
which is created directly over a low altitude explosion by the restrength-
ening of the blast wave might act as a source of acoustic gravity waves. 7

In 1982 DARPA/AFOSR tasked MRC to use mathematical procedures

developed at MRC during the 1970's to perform calculations to determine

what the most important source or sources for the nuclear-explosion-induc-

ed gravity waves are. This document is the final report on that effort.

We have made calculations for the coupling of the blast wave, the rising

fireball and the high altitude hot spot to both ducted and freely propa-

gating acoustic gravity waves. Although the simplified nature of our

atmospheric models precludes detailed comparisons between the calculations

and the data, we can compare the general features of the two. The results

allow us to draw these conclusions: 1) the major source of the large

amplitude ionospheric gravity wave observed following the U.S. and Russian

tests (the wave with periods ranging from 30 minutes to more than two

hours) is the blast wave and the energy is transmitted by the freely

propagating modes, 2) the source of the -15 minute period waves that

were observed to go all the way around the world is the high altitude hot

spot and the energy is traveling in the ducted modes; 3) the motions

associated with the rising fireball give a smaller signal in the freely

propagating modes than the blast wave and a smaller signal in the ducted

modes than the high altitude hot spot; 4) it appears that ionospheric

observations will be of limited use in detecting small (<l~kT) low alti-

tude detonations at large distances (>1000km) from the burst.

In the next section of the present report we briefly review the

mathematical procedures developed in References 6 and 1; we then formu-

late, within the context of these procedures, the problem of the coupling

of the blast wave to the freely propagating acoustic gravity waves in an

isothermal atmosphere. The solution is given as a sum of integrals which

represent, in our way of thinking about the problemi, a sum over

-M2



elgenstates. We have evaluated these integrals numerically and the

results are presented. The fact that our current calculations are for an

isothermal atmosphere whereas the data are for a region of the real atmos-

phere over which the temperature varies considerably causes certain ambi-

guities in comparing our results with data; the way we have resolved these

ambiguities is described in detail in Section 2C. The results of the

comparison of the calculations with the data shows good agreement for both

the amplitude of the disturbance and its wave form; this is the first

calculation of the acoustic gravity wave generated by a nuclear explosion

to show such good agreement. We would expect the agreement between the

calculations and the data to be improved by the use of more realistic

atmospheric models (such calculations would also substantially reduce the

ambiguities mentioned above) but the agreement is already sufficiently

good that we are confident that the blast wave is the source mechanism for

the large amplitude, varying frequency gravity waves.

Prior to resorting to numerical procedures for evaluation the

integrals we attempted to estimate them in the stationary phase approxima-

tion. This procedure worked well enough for sufficiently late time but

the stationary phase approximation proved surprisingly ineffective for

times during the first several oscillations after the arrival of the

signal (the interesting times for our work). In Section 2 and Appendix A

we give the details of our stationary phase calculations and the difficul-

ties encountered. We also remark on the relevance of the results to the
previous work of other workers.4

In Section 3 we consider the coupling of the motions associated

with the rising fireball to acoustic gravity waves. The calculations are

done with relatively simple models consisting of point sources; the calcu-

lations are done in the approximation that only low frequencies contri-

bute. The reason that these calculations have been done in less detail

than those for the blast wave is that the calculations with the simple



model make it clear that the motions associated with the rising fireball

are a much weaker source of gravity waves than the blast wave.

In Reference 7 we presented calculations which gave the coupling

of the high altitude hot spot to ducted gravity modes. In that report

we gave specific calculations only for small events; the formulas given

there can be applied to larger events so as to allow comparison with the

data in Reference 4. The comparison between the calculation and the data

shows good agreement for the amplitude but somewhat less good agreement

for the wave form. We believe the differences between the calculated

waveform and the observed one are due to the effects of dispersion which

is absent from our calculations but present to some extent in the real

atmosphere. Although we expect the dispersion to be small, for the ten

thousand kilometer path lengths of the observations the waveform could

have become appreciably distorted.

By combining the calculations presented in this report with

those presented in Reference 7 we arrive at the conclusions stated above.

* 4



SECTION 2

GRAVITY WAVES GENERATED BY THE BLAST WAVE*

A. INTRODUCTION

In this section we investigate the gravity wave response of the

atmosphere to a low altitude nuclear burst using methods developed earlier

in References 6 and 7. Our goal in this section is to determine the grav-

ity wave signal generated by the blast wave and carried by the freely

propagating modes and to compare with limited experimental observations1_5

This investigation is complicated by the fact that the Euler-Lagrange

equations for a stratified atmosphere are nonlinear. These nonlinearities

cause lengthening and strengthening of the initial blast wave during the

early time development (to about 100 km from the point of blast) which

continues until the relative overpressure is about 5 percent. This early

time development has been described by a model in Reference 8. For large

distances, say 1000 km or more, the relative pressure variation is

sufficiently small and we can assume that the hydrodynamics is well

described by linearized Euler-Lagrange equations in an isothermal atmos-

phere. To obtain a smooth transition from the nonlinear regime to the

linearized one, we use the calculations of amplitude A and pulse length L

of Reference 8 to define the initial boundary condition at some chosen

height D for the linearized differential equations for the atmosphere.

From this point on the linearized equations are solved numerically using

methods of References 6 and 7 and these results are compared to observa-

tions and the stationary phase approximation, an approximation commonly

used in estimating gravity wave response. As we shall see the exact

calculation compare favorably with available observations and in passing

* The methods used in this report were developed and presented in Refer-
ence 7. For completeness, we review the methods in this Section; much of
this material is taken from Reference 7.



we shall note that the stationary approximation is very inaccurate in

estimating the amplitude of the gravity waves arising from a blast wave.

B. HYDRODYNAMIC VARIABLES AND EQUATIONS

To begin with, we consider the case of one isothermal layer.

The hydrostatic solution about which we wish to perturb is given by

4

u =0
P P 0oe z / H

p = poe -z / H

+0

where u is the fluid velocity, P the pressure, and p the density. Po,
Po, and H are constant related by Po = PoHg, where g is the acceler-
ation of gravity. We define perturbing variable by the relations

+ z2

u =V eZ/ 2H

P = eZ/H(Po+0 ez / 2H)

p- eZ/H(p eZ/2H.

We have chosen the exponential factors so that the perturbing functions

V, P p will be bounded for all values of x,y,z, and t, and, for compact
disturbances, will be square integrable functions of x,y, and z for any

value of t. (This fact is not obvious but is seen in the results below.)
For these variables the linearized hydrodynamic equations take on the

familiar form

6



.v1 .......

at 2Hp PO PO z P0

=Y fi av, - i . z ( 1) !0 y pa
at ox o az 2 H z o ay

avx 1 ap

at Pa
0

at P0 ay

- __ V a- X _ ___ (2-1)
at 2H z 0 x%0 o ay

We assume a time dependence eliwt for each of the variables and obtain 7

2HP 0  PO az P0  z

-HP -i ip aVz- - 1) !- - HP wP

0 ax o az 2 H z 0oay

Pax x

-i ap

iP0O ip ,v - iP lz i P LVI -p (2-2)

2H z 0 ax 0 az 0 ay



We now wish to construct a Hilbert space in which our solution will lie.

We arrange the functions into a column vector in the order

V
z

Ia>--

y

p

and define the inner product

-a~ ._V Vzb+ V .x + V -y -,-~
<alb> : _= f PP + Vza Vxa Vxb + Vya Vyb + PaPb dxdydz (2-3)

Equation 2 takes on the form

Mla> = wI a>, (2-4)

where the operator M is given by

0 iYP 1 - )i - - iyP - iyP 0
0 3z 200

i a + i 0 0 0 _ii
PO 3z 2Hp 0 PO

. 0 0 0 0
P 3x

M=

- 0 0 0 0
P0 3y

0 -ip a + o - i P 3 -ip 0 (2-5)
o 3z 2H oa x o ay

8



This operator is not symmetric. We define a new vector space

al

a2

a = a3

a4

a5

where

a1 =----

V z

a 2 --

IyV (c =VrygH)
C

a3 =:

a4 =
c

a5 1 ( y _) (2-7)

V'(Y (-l J 0 P0

The inner product is

<alb> f f alb, + a2b2 + a3b3 + a b4 + a5b5 dxdydz • (2-8)

9
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In the new space our eigenvalue problem, Equation (2-2), becomes

Mla> = wja> (2-9)

where

0 .. 1 +1 0
az 2H yH ax 9y

L + L -L 0 0 0 V_-1
az 2H yH Hy

M=ic - 0 0 0 0ax

a 0 0 0 0

0 .Vy-1 0 0 0 (2-10)Hy

This operator is indeed selfadjoint and we can use all the standard

procedures. If, for example, the perturbed configuration at time 0 is If>.

At later times the configuration will bet

Ia> - f<wif> I"> e d j (2-11)

where the I w> are the eigenvectors of M with eigenvalue .

t Equation 2-11 symbolically indicates that we must sum over all the

elgenstates; due to degeneracy the sum will be a multiple integral.

10



C. EIGENVECTORS

Direct substitution into (2-10) readily verifies that 7

PI Jo(kr)

P2 Jo(kr)I iaz
k =a>P e , j = 1,2,3,4 (2-12)

P3 J1(kr)

P,. J0 (kr)

is an eigenvector of M if:

( 1 'b) 2 )
P- - a-iwd P2=1

(2-13)

P3 = -k p , P = -ib

cha2

c a k 2 -2+k 2 (W--)2 - )c 2  (2-14)a

In (2-12) the index j denotes the distinct eigenvectors corresponding to
different Oj solutions of the dispersion relation (2-14) as discussed

below. In Equation 13 a can be any real number and k can be any positive

real number.

In (2-14) we defined:

Wb2 . y2g2 /4c 2

a

2. (y-l)g2/C2  (2-15)

2 2 m2

d a b

By using Equation 2-14 we can convert from the variable pair (k, a) to

(&. a) and we shall do so later.

11



The eigenvectors are normalized as:

I = N2  (2w)2

w<a,k I k',a'>j Z 2N 6(k-k') 6 (a-a') 6ij (2-16)

with

N2 = jjPj2 . 2 [42(a 2c2+U3 ) + (,2. 2)21 (2-17)
i (a 2c2+,j)W2 b d b

Since the dispersion (2-14) is a quartic equation for u,, there are four

orthogonal eigenvectors, one for each solution of the quartic:

W= [__-k2__)c + (-1) ((,, 3-(k 2+aZ)c 2 ) 2 -4k 2W2 C2 1/2 1 /2
V 2 a ab

i - 1,2,3,4 (2-18)

It can he readily shown that for the roots corresponding to the positive

sign in the square brackets, 2 > 2 and for the negative sign

U.2 < . i = 3, 4.

D. THE INITIAL CONFIGURATION

As the blast wave moves outwardly from a low altitude nuclear

explosion it leaves behind Most of the energy of the explosion (some of

which was initially radiated away) In the very hot fireball and a region

surrounding it which is heated to a much smaller degree. By the time the

overpressure reaches a value of about .05 the blast wave contains only

about 5 percent of the energy of the explosion. The general plan of our

calculation follow the blast wave until the nonlinear effects are

small and Y . Ve use of linearized equations; at such point we shall

make use o' 's obtained earlier which solve the initial value

12
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problem for the linearized equations. It may appear that the point at
which the amplitude of the blast wave decays to .05 would be an

appropriate time to perform the coupling calculation. Such is not the

case however. As the blast wave propagates upwardly through the

atmosphere it strengthens and lengthens. A strengthening of the wave is

predicted by linear theory but not very accurately; the lengthening of the
wave is an inherently nonlinear effect which would not occur at all in

linear theory.

A method for calculating the nonlinear propagation of the wave to

high altitudes was developed by us and is given in Reference 8. The wave

assumes approximately an N-wave shape; that is, it has a shock wave at the

leading edge across which the pressure jumps to some large value followed

by an approximately linear decrease (with distance behind the shock) to a

value below the ambient pressure ending in an abrupt return to ambient.

Specifically, we shall take the hydrodynamic variables to be given by

1

ZI

(2-19)

If(o)> A 1 . (1 2 (D-R-)) r
cRL R'

0

where A and L are given, as a function of the yield and altitude D of the

event, in Reference 8.

We have now, we believe, an accurate description of the wave at

some high altitude and it is at this point we shall perform the coupling

to the freely propagating gravity waves. At this time the front of the

wave is no longer weak but substantial, possibly even considerably larger

than one for a large low altitude explosion. The reader may wonder what

justification we have for treating the problem in the linear theory from

this point on. What we offer is more an excuse than a justification.

13



While the amplitude of the wave is larger most of the strength is

contained in short wavelengths. The content of the wave at wavelengths

which, as we shall see later, are primarily responsible for coupling to

gravity waves is in fact small. Furthermore, much of the nonlinear

lengthening of the pulse has already taken place (the reason for our using

the method of Reference 8 to propagate the wave to high altitudes). Thus

the content of the wave at the most important wavelengths is small and

will change only a little for the rest of the development. We must

anticipate, however, some dependence of our results on the altitude at

which we choose to do the coupling. Another reason for a coupling

altitude dependence of our results is that the method used in Reference 8

calculates only an approximate wave form making no attempt to calculate

the details of the change in shape as the wave propagates. We thus

believe that Equation (2-19) provides a reasonable initial condition for

linearized calculation of the amplitude of the gravity wave response and

obtaining the general features of the wave form. Detailed calculations of

the wave form would require more accurate nonlinear calculations. It is

perhaps surprising that our calculated waveforms agree with the data as

well as they do.

Since the eigenvectors Ik,a>i form a complete set, the vector

lf(O)> can be expanded as:

4

If(O)> "-I fdkfda' -1  Ik,a> i i<k,alf(o)> (2-20)

To obtain the pulse at any later time we write:

4 1 -i t
if(t)> I dkfda e I k,a>t s<kalf(O)>, (2-21)

with wj given by Equation 18.

For calculational purposes it is advantageous to use (, a) as

integration variables. The integral (2-21) can then be written as

14



If(t)> If du, f da + ( + f )d f da } Y((La)i ua><wajf(O)> (2-22)
N

2

where

Y(,a) N2  (2-23)_2
b

is the Jacobian of the transformation. Note that the sum over different

etgenstates is now represented by w integrals over different ranges, the

first term corresponding to i=3,4 and the third and fourth term to i-1 and

2 respectively.

The evaluation of <.,alf(O)> has been given in Reference 7. Here

we only quote the final result

<Walf(O)> _ 4_A 7-iaDp* (2_ (sinaoD-sina(D-L)) - (cosoD+coso(D-L)))
co2  La

+(ia+kP 3) -1 (L (Si(oD)-Si(a(D-L))) - (sinoD+sina(D-L))
L

--(cosaD-cosa(D-L)))] (2-24)

Here

e 02 k+a 2  ,(2-25)

and Si(x) is the sine integral function. In contrast to the two layer

atmosphere considered in Reference 7, a is always real in the isothermal

case.
15



The overlap function vanishes as L+O, i.e., in the limit of no

source, as it should. It is also fairly easy to show that <,aIf(o)> is
finite for a+0 since the quantity in square brackets is proportional to a2

in this limit.

From (2-12) and (2-20) we can now evaluate the velocity in the

z-di rection,

- e fdufda <w,af()>e-i((t-az) JO(kr) Y(a,,a) (2-26)z VT N

For the radial component of the velocity we obtain

V= R fda'da P3(',a)< ,alf(0)>e-i(t-az)J1(kr) Y(o,,a) (2-27)r r, N2

The corresponding r, z-components of the displacement can be found by

numerically integrating V (t), V (t) or by closed form integration, e.g.z r

d = R fdwdai <I,af(0)>e-i(,t-az) J 0(k r) Y(w,a)

(2-28)

The twiddled quantities are related to the observables through a

simple exponential factor. To make this relation explicit we write:

Vi
Vi  - (2-29)

and we can then show, assuming the scale height is independent of z as was

done in obtaining the linearized equations, Equation (2-1):

V AP D exp(z-) V i "z,r (2-30)
i -F i 1

16
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1

and Ais the relative overpressure at height D. Strictly speaking,

Equation 2-30 is incorrect since H depends strongly on z, varying by an

order of magnitude. Thus the absolute normalization of the pulse predict-

ed by 2-30 must be modified to incorporate, at least approximately, the

varying scale height. To do this, we rewrite 2-30 as:

V= AP D exp( effZ ) V.; i = z, r. (2-31)

In our calculations we determine Heff by the following procedure. We

note that the ambient pressure at the height z is

z z-D

P(z) = Poe H(z) = P(D) e Heff (2-32)

Thus:

l/H =1 i P(D) (2-33)
e z-D 75

where P(D) and P(z) are taken from tables of atmospheric properties. For

example, for z-300 km and D1OOkm we get Heff-25km. A simpler estimate

is to use Heff = 1/2 (H(z) + H(D)) - 31.4 km, resulting in a difference

of factor of 2 in the overall normalization.

To evaluate Vi, all that is needed to evaluate Vi. This can

be done either numerically or using any of the available approximation

techniques, such as the stationary phase. As we shall see, only the exact

calculations are capable of providing the detailed information about the

time dependence of the atmospheric motion, while the stationary phase

gives some qualitative features of the TID, but does not provide useful

quantitative information.

17



E. EVALUATION OF THE DOUBLE INTEGRAL

The generic form of the integral is (cf. Equation (2-23))

V = fd4da y(o,a)e i wt (2-34)

b 0 Wt "a 4

= f d u, f da y(u,a)e iAt + (I duL+f dw) f da a y(wa)e -it (2-35)

Ub 01a _,C2 _W2
a

Since the high frequency components of the blast wave do not propagate

very far in the atmosphere, it appears reasonable to assume that the

second term contributes little at large distances. We can therefore

approximate the integral by the first term only. In principle, this eval-

uation becomes very time consuming if needed for a number of different

values of t,z,D,r,L. To improve the speed of the numerical calculations

we note that we are interested in V as a function of time. Therefore, we

construct tables of the integrals:

Y(u,,T) = fda y(a,a)e~i0t (2-36)

for a fixed t-T we then have

V(t) - fdwY(.,T) e i (T-t) . (2-37)

Once Y(w,T) is known to any desired accuracy, the evaluation of V(t) from

(2-37) is quite rapid. The results of the numerical calculations are

reliable only for small times, i.e., the first few periods after the

arrival of the pulse. To calculate for later times it is necessary to

develop approximate techniques for the evaluation of the double integral.

The method adopted is that of stationary phase, which has been used by

several authors (4). The essential idea of the stationary phase is that

the major contribution to an integral of an oscillatory function arises

from the point at which the phase is stationary.

18



To obtain a form amenable to the stationary phase treatment, we

note that:

Si(x) = f(x)sinx+g(x)cosx (2-38)

JU(x) = F(x)sinx+G(x)cosx (2-39)

where fg, F,G are functions which we assume have no oscillatory

structure. Strickly speaking, this is not correct. For example, in the

Bessel function, the argument in the trigonometric functions contains

corrections of order 1/x. However, since the stationary phase is an

approximation, this probably does not cause large errors.

The phases in the double integral are of the form:

* = ut±kR-a(z-D)±od (2-40)

where d=D or d=D-L. To obtain the stationary points, we need to calculate

the roots as,u s of the equations.

a. 0  =0 (2-41)

This leads to 8th order algebraic equations whose solutions cannot be

given in closed form.

Since we know that high frequencies do not propagate easily over
2 2

large distances, we assume wI<b . With this assumption the dispersion

(16) becomes:

2 ("a ) +2  2 
2 4 

2
a c + k (2-42)

19



and the stationary points are

s b t =-P rb

aso ±'a Vt2c2-p2 - wat/r (2-43)

ks -

k n ' b t C

s r

and a2 . a2. Here c = z-D±d and p = ar/, b

The stationary phase method then consists of approximating the integral

I = fdofda ei ( a)F(aa) (2-44)

by:

I = _ _ 2 _ _ F(, a) e i(( s as )+/4)

Ta a ,as W (2-45)

and the sum is over all stationary points.

After some tedious algebra:

32 #(sl) 1/2 C I aIr (2u 2 +a2 r2) 1/2
a2 % ,as  a2 % (

(2-46)
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Let:

1= Z, 42 z-2D, 3 = z-L, 4 = z+2D-L (2-47)

(+ ). LL ( i)t - k ( i)R - asC

(2-48)

))t+k (4i)R as¢I "s( i t ks " ;

and there are 8 stationary phase points in the integral. The evaluation

of the stationary phase integral is fairly rapid, as compared to the exact

calculations. However, the stationary phase calculation is possible only

at time t>p/c, and pr, i.e. after the pulse arrival. For y = 1.4,

p = 1.108r and the stationary phase derivation based on the assumption

W2<0.2 is valid only for t > 1.5 R/c by which time most of the
a

disturbance has died out. Nevertheless, the stationary phase is useful in

making qualitative statements about the nature of the oscillatory

behavior. For example, the form of the stationary phase Os suggests

that the fastest period of the oscillation is about

(-z -(2-49)
s r

as is indeed borne out by our exact calculations.

Before proceeding further we discuss other stationary phase

treatments found in literature and point out some drawbacks of this

method. In the exact calculations the velocity and displacement are

related by:

V - Re(fdo, F(,.)e iwt) (2-50)

F (,-) 1i4 (2-51
d-Refd,- e (2-51)

21



and it is a standard assumption in the literature that if both V, d are
calculated from the stationary phase approximation to these integrals

then the. rel at ion

d = fdtV(t) (2-52)

is satisfied. We show (in Appendix A) that this is not exactly correct

and it is necessary to decide which integral is (better) approximated by

the stationary phase. The difference in evaluating d from (2-51) or from

(2-52) depends on the structure of the dispersion relation and the form of

the function F(c,) and the accuracy of the stationary phase approximation.

A related problem is the fact that the stationary phase approxi-
mation does not vanish as L+O, i.e., in the limit of no source. Both

these difficulties can be remedied by including higher order terms in the

stationary phase expansion, thus satisfying the relation to any arbitrary

accuracy. However, the evaluation of the higher order terms involves some

extremely complicated algebraic manipulations (for the dispersion relation

(2-16) considered here) and is somewhat labor prohibitive.

A standard stationary phase trC-3tment in the literature is

carried out on the Green's function. 5 We feel that such a treatment is

inconsistent for two reasons. First, the stationary phase Green's

function is used in an integral over time which yields the resultant

displacement and velocities. As indicated in Appendix A, this may lead to

significant, and more importantly uncontrolled errors, thus diminishing

the usefulness of such calculations. Second, in the Green's function

evaluation, the stationary points are independent of the source, contrary
to our results. A more detailed investigation is needed to determine the

accuracy of these approximate treatments.
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F. NU1MERICAL CALCULATIONS

To investigate the possible approaches to calculating the

atmospheric gravity waves we have developed two computer codes. The first

one evaluates VZ, Vr, dz, dr as functions of time for fixed r, 0,

L exactly from Equations (2-26) and (2-27) and includes also the high

frequency (u.2>w.2) contributions. The second code calculates V ,d 9Va z' z r'
d rusing the stationary phase methods. The calculations were carried out

for a range of radial distance r = (1000 - 4000) km and yields Y ranging

from 1 kT to 30 MT at observation height z = 300 km. In most calculations

the pulse was coupled at D = 100 km and the value of Yi = 1.4 was used.

Our calculations are normalized as in Equation (2-31) and c = 334 rn/sec.

- In order to test our codes we have carried out calculations in

the region where the pulse originates. Although the calculation is quite

time consuming numerically and requires the inclusion of the high

frequency parts of the integral, we have been able to reproduce
successfully the initial pulse. We have also tested the importance of

including the high-frequency contribution to the mode sum. For large

radii (r > 1000 kin), this contribution turns out to be negligible for all

times t>R/c, R2 = r2+z2.

The next calculation we wish to discuss is the comparison of the

stationary phase and the exact numerical calculations illustrated in
Figure 1. As is readily evident from these results, the stationary phase

is quite reliable in predicting the general time dependence of the gravity

waves even at fairly early times. However, the stationary phase is

totally unreliable in predicting the amplitude of the gravity wave

response, except at very late times (after 3 or 4 periods). This is

unsatisfactory since by this time the disturbance has essentially died

out. At early times, the amplitudes predicted by the stationary phase are
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several orders of magnitude greater than the exact calculations and no

stationary phase calculations can be carried out for t < war/ta-bc.
This suggests that in order to understand the early time behavior of
gravity waves it is necessary to carry out exact calculations and the
stationary phase is qualitative at best.

With this in mind, we set out to investigate numerically the
properties of the gravity wave response as functions of the yield, hori-
zontal distance and Y and compared with observations. In the first set of

calculations we calculated the displacement dr for r=1000, 2000, and

4000 km (i.e. r-R) for the yield YV 10MT. The results show an initial

outward displacement of the atmosphere of about 20-30 kin, its magnitude

essentially independent of the horizontal distance, followed by an inward

displacement whose amplitude decreases with R as 1/R. The period of

oscillations increases linearly with R, in agreement with the stationary

phase analysis and observations. These results are illustrated in Figure

2 where we plot dr(T), t =TR/c. Note that the response is essentially

zero for Tr<1, i.e., prior to the pulse arrival, as it should be. An

important information relevant to test detection is the dependence of the

gravity wave response on the yield of the weapon exploded. This depen-

dence does not follow trivially from the formal expressions since differ-

ent yields correspond to different A and L, neither of which have a simple

yield dependence. We have carried out exact numerical calculations for

yields from lkT to 30 MT. Some of these calculations are plotted in

Figures 3 and 4 where we plot dr(t)/Y for r - 1000 and 4000 km and Y

.1MT - 30 MT. It is readily seen that in the first period dr(t) is very

nearly proportional to the yield. The yield scaled curves begin to differ

at later times. The linear dependence on yield remains valid at later

times for the maximum amplitudes, however. The absolute displacements

dr(t) are plotted in Figure 5, for Y-1kT and 10 kT at r-2000 km. The

calculated yield dependence of the response cannot be readily deduced from
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either the exact equations or the stationary phase calculations. Another

numerical analysis has been carried out to study the y dependence. Our

results indicate that the period of the gravity wave response is approxi-

mately proportional to 1/:'-I in agreement with the stationary phase

prediction, and the amplitude is roughly independent of Y. This is illus-

trated in Figure 6 for Y = 1.67 and y = 2.

For the calculated radial distances, the vertical displacement

dz(t) is found negligible compared to dr. For observation carried out

at and magnetic dip angle and *, the angle of propagation relative to the
magnetic meridian, the vertical height variation is then

h(t) - d r(t) sin2fcos/2.

This gives variations in height calculated at Tonga (e=-41.5*, *=8.10 ,r=

3900 km) for the megaton range Housatonic test of order 20-40 km, in

agreement with reported observations.1 - 5 It should be noted that for

bursts in the 1 kT range, the calculated height variations are several

meters, well below the sensitivity of the standard ionosond observations

and probably well masked by the noise due to ionosphere motion caused by

other (natural) mechanisms. Thus it is not likely that the gravity wave

can be used as a reliable guide in determining the yield of the weapon

exploded for low yield (Y<lOkT).

In all the calculations above we had coupled the initial pulse

at D-100 km. This is an arbitrarily chosen altitude which may be motivat-

ed by the fact that the atmosphere is almost discontinuous at this

height. The calculation of If(O)> using methods of Reference 7 should be

reasonable below this height since we expect the pulse to contain very

little of low frequency components. We also carried out calculations for

D - 150 and 200 km. The calculations indicate a strong dependence on D

which is evidently associated with the almost discontinuous behavior of

the atmosphere around D - 100 km, which changes rapidly the values of A
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and L calculated in the nonlinear model of Reference 8 which are used as

input in present calculations. It should be noted that lf(O)> is not a

solution of the linearized equations of motion so that the strong

D-dependence is not entirely unexpected. In all calculations of the

D-dependence, the best agreement is in the size and position of the first

peak and the choice of D=100km for our other calculations is more

motivated by the agreement with observations then rigorous arguments.

Whether this problem can be corrected by using a two layer atmospheric

model as outlined in Appendix B or some other means requires further

numerical work.
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SECTION 3

RISING FIREBALL AS A SOURCE OF GRAVITY WAVES

A. INTRODUCTION

Calculations in the previous section indicate that observed

gravity waves from large yield, low altitude nuclear explosions can be

produced by the source which provides a high altitude blast wave, namely

the initial rapid release of energy at the burst location. While it has

long been recognized that nuclear explosions produce distant gravity

waves, the details of the source mechanism and its relation to amplitude

and time history of the observed gravity wave have not before been firmly

connected.

While it has been accepted that the energy source is important,
it has been suggested by several authors that the fireball, which is sub-

sequently produced by the energy release, undergoes motion which may also

be a significant source for gravity waves."'"' The fireball is formed

within seconds of the burst and it consists of a nearly spherical hot

region of greatly reduced density which is approximately in pressure

equilibrium with the surrounding cool air. However due to the ambient

density stratification there is a net buoyant force on the fireball which

causes an initial upward acceleration and a subsequent rise at roughly a

constant velocity. The complex details of the fireball rise dynamics

include entrainment of cooler air, vortex formation and expansion due to

the decrease in ambient pressure with increasing altitudes. The fireball

motion does not cease immediately upon reaching its equilibrium altitude,
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rather it tends to overshoot this altitude and oscillate about it at

approximately the Brunt period. At the same time that the fireball oscil-

lates around the equilibrium altitude, it also expands and contracts in

unison due to stratification of the ambient pressure.

In this section we will model several aspects of the fireball

motion in order to find the significance of such motion as sources for

gravity waves relative to the blast wave source. This will be done using

two different models for fireball rise at a constant velocity along with

models for fireball oscillation about the equilibrium altitude and for

fireball radial expansion and contraction near the equilihrium altitude.

It will be concluded that for the liner theory used, while the

fireball motion does indeed act as a gravity wave source, this source

mechanism is not important when compared to the initial deposition of

energy which produces the blast wave so that fireball motion can be

ignored for the purposes of gravity wave production.

B. BACKGROUND

A low altitude nuclear burst quickly dumps energy into a local-

ized region which is approximately spherical. A portion of this energy is

radiated away in the form of waves, linear and nonlinear, in both the

acoustic and gravity wave frequencies. In the previous section the grav-

ity wave from the blast wave produced by the initial energy deposition was

calculated. However after the blast wave has departed from the immediate

region of the burst there remains a fireball which undergoes motion which

can serve as an additional source for gravity waves. The fireball is

formed within seconds of a nuclear explosion and it consists of a heated

region of a debris-air mixture which is approximately in pressure equilib-

rium with the surrounding cooler air. The fireball temperature is about 1

eV and the density is about 10% of ambient. The fireball volume is pro-

portional to the yield so the radius "a" scales like
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a = 10, (YMT )113 (cm) (3-1)

so a I MT burst gives a radius of about 1 km.

Since the underdense fireball resides in the stratified atmos-
phere, there is a buoyant force which tends to cause the heated region to
rise. The dynamics of fireball rise include the interaction of the buoy-

ant force with the distortion of the fireball which entrains cooler air

and forms a vortex ring. The net effect of this complex behaviour is a

gross rise of the original fireball material at a velocity which is nearly

constant and is approximately

V = /agO (3-2)

where g is the acceleration of gravity and B is a measure of density

defect of the fireball 8 = (PO - P)/P 0 . This velocity is that appropriate

to thermal rise which was given by Scorer. 12

The flow outside a couple of fireball radii is approximately

that seen around an object rising at constant velocity. At smaller radii

the features we see are mruch more complex. However, since the size of

this region is small compared to the wavelengths of distant gravity waves,

we expect that the details of the motion will not be important in

dictating the general character of that gravity wave.

Fireball rise from a 1 MT burst continues for a few hundred

seconds until it reaches such an altitude that the density of the expand-

ing fireball equal!, that of the ambient air. This stabilization altitude

(- 20 km for a 1 MT burst) is dictated by the yield. The fireball does
not immTedately settle at the stabilization altitude but tends to oscil-

late about it after an initial overshoot of the order of a scale height.
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This oscillation takes place at about the Brunt frequency and may continue

for a few cycles. At the same time the fireball is bobbing up and down,

it also undergoes radial expansion and contraction. The motion of the

fireball about the stabilization altitude will act as a source for gravity

wave generation.

To date there has not been a convincing calculation of the

extent to which fireball rise is a source of gravity wave. Pierce ° has

presented a formalism which allows gravity wave source terms to be

included in the equations in terms of moments of an excluded region such

as the fireball. However no examples have been worked out. Murphy and

Kahalas'' have discussed some features of fireball rise sources but again

no calculations have been made. The work of Tolstoy and Lau , although

restricted, is the only example of an attempt to find the quantitative

relation between fireball rise and gravity waves.

Tolstoy and Lau have solved for the distant effects of a force

source moving upward at constant velocity in an incompressible medium

which is hounded by rigid horizontal surfaces at z=O and z=500 km. The

solution is expressed as the sum over the infinite set of modes where the

coefficients are evaluated in terms of source characteristics. They find

that for a I MT surface burst at a range of 10,000 km and an altitude of

250 km vertical displacements of about 5 meters will be generated. The

amplitude is found to scale like (yield)513 . An amplitude of 5 meters

is quite small compared to observed displacements of tens of kilometers

for large yield bursts. Furthermore the time behavior of Tolstoy and

Lau's displacement indicates that a period of about 20 minutes dominates

the behavior. This behavior is difficult to understand since the Brunt

period is - 4 min so the dominant period would be expected to be Brunt

Period x (R/z) 160 minutes. The authors further calculate the gravity

wave effects from a mass injection source (referred to as an explosive

source) which gives a gravity wave amplitude which scales like
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(y iel1d) 1!3. It is found that for low-altitude bursts the fireball rise

mechanism dominates for yields greater than 1 MT. However the authors

point out that an energy injection source will produce a gravity wave

amplitude which scales like the yield but no comparison is made with the

fireball rise mechanism.

The force source used by Tolstoy and Lau was drawn from work by

Warren 14who calculated the force on objects moving at constant velocity

in a stratified incompressible inviscid medium. The force on the objects

results exclusively from the stratification of the medium. Warren found

that a sphere of radius "a" moving at a velocity V in a medium of density

po and scale height H requires a sustaining force of

F = g Rad9v) (3-3)

where R dis a function of velocity, through

V=a g (3-4)
WV H

For a sphere, R dis a function which peaks at about 1 for v 0.8 and is

proportional to v 2 for small v. This force is referred to as the wave

resistance because the energy expended through it is radiated away as

gravity waves. It should he noted that F peaks (v = 0.8) when the time

for the fireball to rise a diameter (2a/V) is approximately equal to the

Brunt period (/g/H/2r for incompressible fluids). Since the buoyant force

is at most

8max 4wr po a 3/3 ,(3-5)

the wave resistance is generally less than the buoyant since B/F =4H/a

and H is about 5 km at low altitudes.
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Elements of Warren's theory have been verified by experiments by

Mowbray and Rarity. 15 In these experiments, a sphere in a stratified

medium was moved at a constant velocity while looking for evidence of

gravity waves. It was found that no observable wave pattern was set up if

the velocity was too great (in Warren's terms v < 0.2 gave no pattern) but

that a smaller velocity (corresponding to v - 0.8) gives rise to a good

wave pattern with periods suitably related to the Brunt period.

Other experiments by McLaren, Pierce, Fohl and Murphy 16 are

relevant to the generation of gravity waves. These experiments consisted

of the release of underdense fluid elements in a stratified medium with

subsequent observations of fluid motion well away from the source. The

results indicate no gravity waves are generated during the rise phase of

the motion. However gravity waves are generated following the rise when

the sample fluid element oscillates approximately two times about its

stabilization height. It is not clear that the failure to generate waves

during the rise is in contradiction to Warren's theory since inadequate

information is provided to find a value of v for comparison. Furthermore

it is not obvious that a solid body under an external force should gener-

ate the same waves as a miscible fluid element moving at the same velocity

under strictly hydrodynamic forces. In any case, the results of McLaren

et al., indicate that the oscillations about the stabilization altitude

should be considered as a gravity wave source as an element of the fire-

ball rise mechanism.

C. GRAVITY WAVE THEORY

The hydrodynamic equations of motion of a perfect gas in the

presence of sources can be written as
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ap + +
+ V • 7p + pV • V = pQat

+

p- + p(V • 7) V - pg + Vp pF (3-6)
at

a -Y +-Y 1-Y(pp- ) + V * V (pp-) = (y - 1) p S

Where Q is a mass source (sec-'), F is an acceleration source (cm/sec2 )

and S is a heat source (ergs/gm/sec). When these equations are linearized

in an exponential atmosphere of scale height H with constant sound speed

c, the Fourier transform of the relative pressure perturbation can be

written as

2 2 b 4 2
W

2 W2 2 22P W2-_2 a z  p H( - 3Z p 4(W2_2 H2 ,2 P

SVb F + F (3-7)

gH a2 2 az g2 (y .1) (W2 W ) z

2 Hw

g2H2  (w2 w)y W2 2 az gH

where wb is the Brunt frequency and wa is the acoustic cutoff frequency

defined by Equation (2-15).
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The formal solution for the pressure pulse resulting from a source M can

be written as

S_p + -z'12H+ ++

e/ d ' f dT G(r-r'l, T) M(r', t-T) (3-8)

where G is the Green's function for the pressure equation. In general

there is no closed form solution for the time domain Green's function

However the behavior in the limit of low frequencies, w < ub" is readily

expressed as

G b - J 0 (w (t2_(R/c)2)1/2) e(t-R/c) (3-9)

LF 41TR c

where the characteristic late time frequency is

Z-Z'
c R b

for a source to observation range of R and sound speed c. The function 0

is a unit step function which allows no response until t > R/c. While the

low frequency Green's function will not accurately reproduce behavior for

times near R/c, at observation locations for which z < r the later time

behavior is well represented. This has been verified in a previous

report. 6 As a result, since we are interested in behavior at points at

thousands of kilometer ground range from the source, but at ionospheric

heights, we feel that the low frequency limit is a useful tool for explor-

ing the implications of different source models.

The source function M, in the low frequency regime can be

expressed in the time domain as a rather simple function of Q, F and S

when it is noted that i - 73. Thus for u, 4 b we find
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ML 3 a3 1 a2F

LF gH ax ay azat 2  g(y-1) at 2

(3-11)

g2H2  at at az gH at

A useful example of a low frequency response is provided by a

source which provides, in the acoustic range, an N-wave pressure fluctua-

tion. As shown in that previous report 17 such a source of temporal length

To gives a pulse of the form

SP = z/2H
, = A e N(t-R/c)

p 4 ifR
(3-12)

. =b (t-T 0/2)'ac T02  1U (-/2 -Rc)12

6((tTol2)2  (R/c)2)12 O ct-o/2) - R/c) /

where N(t) is a unit amplitude N-wave and the normalization A can be fixed

in terms of the N-wave amplitude at any location. Thus if the N-wave has

an amplitude (6p/p)o at a vertical location z0 , the low frequency gravity

wave associated with the same source will have a peak value of

Z-ZO U 2 T2 R

(1p) ( P) zO e 2H- b c o (3-13)
p max p 0 R 12 c

p
fora tmet jstafter Rfc. Note that (od- )oin this equation is the same

asA in Equation (2-30). This example will serve as a useful standard
P

against which to compare the effects of other sources.
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D. RISING FIREBALL MODELS

In this subsection we will present, in the context of gravity

wave theory, solutions for a set of source models which simulate several

aspects of fireball motion. These gravity waves will be compared with

those from a blast wave source in order to establish the dominant source

mechanism for gravity waves from nuclear explosions. The models include

two which provide fireball rise, one which simulates the vertical bobbing

motion about the stabilization altitude and one which describes the coher-

ent radial oscillations, or breathing, while the fireball oscillates

around the stabilization altitude.

D.1. Moving Source of Force

Initially we will consider the source model used by Tolstoy and

Lau. This is a point source of force in the vertical direction which

moves at a constant velocity V for an interval of time T. The accelera-

tion per unit volume imposed is

F = !f 6(x) 6(y) (z-Vt) [e(t) -0(t-T)] (3-14)Fz

where 6 is the unit step function. Here.'will be taken as the net force

on a sphere moving at uniform velocity through a stratified medium as

given by Warren. The source can be considered as a point because the

gravity wave wavelengths of interest greatly exceed the fireball size.

The low frequency source MLF contains a term for a force source

which is proportional to the second time derivative as well as the

z-derivatlve of this expression. Since the source region is small and the

force has a single sign, we can neglect the z-derivative contribution.

Therefore the low-frequency pressure fluctuations from this source mechan-

ism is
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Sp = z 2H f dz' e z'/ 2 H fd ~
pR/c 4TR C/2zc

( 2Hl (!f S(Z'-(t-T)V) [6'(t-T) -61(t-T--r)] 3-15)

+ 6"(t-T-Z/V) [e(t-T) - e(t-TT) I
lVI}

The three terms lead to contributions which are of the form

e = z/ 2 H 41 h J

p 4w(y-1 ) g 2Hp

( e-z'/2H j( /t'2- 2 =

II( R / C Wt,'=0
-~ ~ ______________ 9(t '-R/c) t=

(r/(t2-R2/c2 z'=VT

2V ez/ 2H Obj

4w(y-1) g2Hp

-z 1'=0
a ~e7Z/ 2Ht '=t (

-z .( R 0o (4c It 2-R2/c2)) e(t'-R/c) z'-VT

t'-t-T .

e ezI 2H wbrMin(VT,V(t-R/c) e '2

4w(y-I)g2 HpIVI 0 R

la2(JO (Wc /T P~) Lt-z'2 (3-16)
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where R - [r2 + (z-z') 2 ]'/ 2 . Note that the third term begins at zero at

t = R/c and grows linearly in time at early time while the other two terms

have their peak (although this is not completely obvious) at t immediately

following R/c. The first two terms are obtained by evaluation of the

difference of the expressions at the indicated values of z' and t'. If

t< R/c + T, then only the upper values are used since the second step

function to cut off the source should not be invoked.

Now an upper bound on the contributions of the three terms can

be found by evaluating the first two at t = R/c and the third at t=R/c +T

when T 4 w-1. This gives
c

LPma - bc + (-2V)(-( + ' - '-' '-1

p ma c-f (y-l)H 2czH Y2 R 3-17)

(U Z 2-

+ c (Y-l) z 2

8 y2 H2 R T

For the parameters considered later for distant observations of a 1 MT sea

level burst, it will be found that the second term is the dominant element

of the expression.

0.2 Rising Mass Dipole Source

The flow of air around a rising fireball, at points outside the

fireball itself, resemble a dipole flow around a moving source pair

(source and sink) separated by roughly a fireball diameter. This combina-

tion of motion and point sources can easily be simulated to provide an

alternate model for the fireball rise mechanism as a gravity wave source.

Since it is not clear exactly which aspect of the fireball rise is most

important in production of gravity waves, it is best to provide models for

several features.
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A pair of rising mass sources displaced vertically by a separation

Az and acting over a finite time, T, can be described by

Q = I dM 6(x) 6(y) [6(z-Vt) - 6(z-Vt-Az)] [9(t) - e(t-T)] (3-18)
p dt

where the net emission of mass is exactly zero. A single one of the pair

of sources emits mass at a rate dM/dt while the other absorbs mass at the

same rate. Since the net effect of the motion of the fireball (at con-

stant velocity V) is to move air from above to below the fireball the

displaced mass will give

dM = pwa2V (3-19)
dt

where "a" is the fireball radius. We will take dM/dt to be constant and

simply treat the density, p, as a parameter.

We will now sketch the calculation required for a single source

and take the sum of two following the final step. Consider the source

Q = 1 dM (x) 6(y) S(z-Vt-z) [e(t) - 8(t-T)] (3-20)
p dt

In the low frequency limit the pressure response to this source is

6p dM e- z /2 d J (c (t2"R2/c2)1/2)

p 4igHp dt R R/c

• [6(z'-zO-V(t-T)) (6(t-T) - 6(t-T-T))

+ 1a I (t-r- __Z''Zo) (O(t-T) -(t-T-T) (3-21)
V V
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After the trivial integrations the result is

eZ /2H .bdM e- z'/2H 0z'-zo

p 4wgHp dt R J (t 2 -R2 /c 2 )z=zo+V T(tIt-T

zo+VT -z'/2H
+ f dz R [R Ji1 c ( (t-z -z0) 2 . R2/c2))i/2

zoRV

(t- Z'-Zo)
V3c ,,_ _V _.] (3-22)

(t - z'-Zo)2 - R2/C 2

V

If t < R/c+T the first term is evaluated only at z'=zo and the upper limit

of the integral is zo+V(t-R/c). The peak value of the above expression

can be estimated by evaluation of the first term for t n R/c and for the

second at t * R/c +T. This gives (for uc 4 ub and ,cT K 1)

e Zl2H W 1,2 T

mp) e 2Hp b dM e-ZO/2H I - c e-VT/ 2H) (3-23)p max 4gp dt (R 2c

The corresponding result for two sources of opposite sign separated by Az

is then

e T _V)/2HT/4H

p mab dM (I - e" Az/ 2H) I - eVT/2H%
p max" 47rgHp d- (R 2c

(3-24)
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D.3 Oscillating Sphere

The experimental work by McLaren et al suggests that a buoyant

object oscillating about its equilibrium altitude acts as a source of

gravity waves. In order to model the contribution of fireball oscilla-

tions to gravity wave generation we consider a force source which oscil-

lates in sign and location in such a manner that the associated accelera-

tion is approximately that of a fireball. A damped oscillation can be

represented by

Fz = A sin (w t) e-(t 6(x) 6(y) 6(z-z 0 -Az sin wot) e(t) (3-25)

where u is the oscillation frequency and Az is the amplitude. If a

sphere of radius "a" oscillates at a frequency 0o, the peak acceleration

will be w2 Az over a volume of 47ra 3/3. Thus at a density p, the net force0

required to impose such an oscillation will be

= 2 Az 4wa 3p/3 = Ap (3-26)
0

The pressure fluctuations, in the low frequency limit, can be

written as

Z-z0

6p e 2HAj u b- -ltTe 'b A e Jo ( c -

p 4wR gH (y-l) R/c

* [(" W2 sin (W (t-T)) - 2cia, cos W (t-T) + a2 sin w (t-T)) e(t-t)

+ (2(. cos wo(t-T) - 2a sin w.(t-T)) 6(t-T)

+ sin w0 (t-T) 6'(t-T)] dT (3-27)
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Now for distant observation points u is a small compared to a since the

fireball motion is damped out after a few oscillations at approximately

the Brunt frequency. That is

UC << L W b /n (3-28)

where n is the number of oscillations before damping. As a result the

bulk of the time variation of the integral is provided by the exponential

factor. This leads to

Z-ZO2H_____
6__0 e Ub A . ( _2 2 ) 2i (-a e-c( / o)) J 0  (. t2-R2/c 2 )

p 41 Rg2H (y-1) 00 W2 c

(3-30)

Thus for the above restriction on a, the peak fluctuation will be

Z-Zo
2H a3Az4wa3

) b (3-31)

p max 12wRg 2 H(y-1)

D.4 Breathing Sphere

As the fireball bobs vertically about its equilibrium position,

it also undergoes expansion and contraction cue to the associated varia-

tion of ambient pressure. While there is no direct evidence to suggest

this is an important gravity wave source, it may be that this mechanism

produced the waves seen experimentally by McLaren et al since they could

not separate the effects of bobbing and breathing. Therefore we will now

give a model for this breathing which is appropriate as a gravity wave

source.
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The breathing of the fireball can he simulated by an oscillating

mass injection which provides no net mass change over a cycle. We will

take the mass change to be

AM(t) = AM sin ( 0t) (3-32)

It operates for a single cycle, is continuous and acts at a point. The

source for our model is then

U, 0 +Q - AM 6(r) cos (w t) 0 < t < 2w/1 °  (3-33)
p 0 0 0

so the low-frequency response is

ez/ 2H AM0 W

p _ h r dT Jo(u.c VT
2 -R 2/c2)

p 4rgH pR R/c

[u2 sin 4 (t-T) [e(t-T) - 6(t-T-2n/o

0 00

- U0 cos U (t-T) [S(t-r) - 6 (t-T - 2w/,o)]] (3-34)

The terms in the square bracket have a time scale - I-l while JO has a
0

time scale - u.- Consequently, since - J c can be expanded
c 0 b c

about T = t and the integral can be directly evaluated. When this is

done, one finds that the first three terms in the series give no

contribution to the integral so that the result is

6P . 2r H .A M 1 33J (3-35)
p 4wgHPR W2 33

0 T=t
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so the peak value at t = R/c will be

ez/2H W6
e6- -- AMR ) (3-36 )

p max 2gHpRw 2  48 c

E. EFFECTS FROM FIREBALL MOTION MODELS

In order to find the magnitude of the gravity wave response to

the fireball motion models presented in subsection D, it is convenient to

use a consistent set of parameters appropriate to a typical case of inter-

est. In this we will follow Tolstoy and Lau who considered the example of

a one megaton low-altitude explosion as observed at a distant point in the

ionosphere.

We will use an observation height of z = 250 km where the dens-

ity is p - 6 _ 10-14 gm/cm3. When this is compared to the sea level value

(P= = 1.2 x I0-3), it is seen that a mean scale height of H - 10.5 km is

required to provide the proper ratio for an isothermal atmosphere. Fire-

balls are initially at about 10% ambient density so the density defect is

6 - .9. For a 1 MT burst the initial fireball radius is a I km. There-

fore the fireball rise velocity, for g = 950 cm/s 2 , is

V - Vag$ . 9 x 103 cm/s (3-37)

The force which must be exerted on a sphere to sustain this motion in a

stratified medium is then

P0a
4 g - 1014 dynes (3-38)

max H
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This is an upper limit since the peak value as a function of velocity has

been taken. (Note that this net force is much less than the buoyant force
4/3ra 3p0.) Tolstoy and Lau indicate that the rise time of the fireball

before reading its equilibrium altitude is

T - 300 sec

This is consistent with experiment by McLaren et al which suggest the rise

takes about one Brunt period. In this example

yi g 1.6 x 10- 2 sec -1

so the Brunt period is rB = 2 /Wb 390 seconds. To complete the para-

meters required we use Y = 1.4, observation radius of r = 104 km - R giving

= 4 x 10 - 4 sec -1 and c = 374 m/s.c

Now the rising force model of Equation (3-18) gives

P) 3 x 10- 4 Rising Force
p max

The result for the rising dipole mass source from Equation (3-25) for a

separation Az = 2a is

L = 4 x 10- 3  Rising Dipole Mass
p max

The oscillating sphere source provides the result of Equation (3-31) which

for an amplitude -6z of 5 km and a frequency of u. 0 -l.b gives0

!p) 4 x10- 3  Oscillating Sphere

p max
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Finally the breathing sphere yields for AMo = 0.1 • 4/3na 3p, corresponding

to a 10% volume fluctuation,

aP) = 2.5 x 10- 5 Breathing Spherep max

For comparison with the blast wave source as provided in Equation (3-14)

we take the 1 MT values initialized at zo = 100 km; (6p/p)o = 2.1 and

To = 100 seconds. This gives

P) = 1.5 Blast Wave
p max

For comparison with observations it is often useful to express

fluctuations in terms of vertical displacement. Generally there is not

simple relation between 6p/p and displacement but in the case of low fre-

quencies a useful result can be given because in this regime the motion is

nearly incompressible. Therefore pressure perturbations result from

vertical displacements of the neutral air such that

_p z(3-39)
p H

However observations in the ionosphere are of vertical displacement of the

plasma which tends to move with the component of the neutrals along the

earth's magnetic field. Furthermore the gravity wave particle motion

tends to be radial from the source so that combining this information we

find a neutral radial displacement of

6r - 6z r (r)H P (3-40)
z z p
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giving a vertical plasma displacement of

Az Sr sin edCos 0dCos @(3-41)

wee6d iste magnetic dip angle and * is the angle of propagation rela-
tive to the magnetic meridian. Thus for typical magnetic angles the

product of the trigonometric functions is -1/4. The vertical displace-

ment of the ionospheric plasma from a low frequency pressure fluctuation
is then

A .rH (3-42)
p 4z

The blast wave calculation for 1 MT as observed at 10,000 kin, from previ-

ously stated parameters, will be - 150 km which is about an order of
magnitude greater than that found in the previous section. This differ-

ence is largely due to different choices of effective scale heights (10.5

km versus 25 kmn). Use of 25 km leads to a reduction of about a factor of

30 or to a net A zof 5 km in the current calculation. This is comparable

with the result of Section 2. This illustrates a difficulty of making a

direct comparison with experimental results using an isothermal atmosphere

model.

F. SUMMARY

The calculations of Section 2 indicate that the gravity waves

with periods of up to hours observed at thousands of kilometers from low-
altitude large yield nuclear explosions are generated by the blast wave
mechanism. In this section we have explored the possibility that the

fireball rise and oscillation may also make a significant contribution to

gravity waves. To this end a set of four models of fireball motion have

been constructed and there effects calculated using the low-frequency

theory in conjunction with point sources. It is found that each of the
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source models generates only very weak gravity waves relative to the blast

wave mechanism giving pressure fluctuations which are about three orders

of magnitude less than that from the blast wave source. The models used

for fireball motion are rather simple. However in each instance approxi-

mations used were chosen to maximize the effects generated. As a result

we can be fairly confident that use of more realistic models will not

alter the basic result and such calculations are not justified since it

seems clear that fireball rise is not a significant source of gravity

waves from low altitude nuclear explosions.
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SECTION 4
SUMMARY AND CONCLUSIONS

In the present contract DARPA/AFOSR tasked MRC to study the gene-

ration of ionospheric gravity waves by nuclear surface bursts to determine

what aspects of the explosion are the most important source of ionospheric
gravity waves, special consideration has been given to the question of

whether or not the traveling ionospheric disturbance observed by Lewis
Duncan at Arecibo on 22 September 1979 could have been caused by a small

low altitude explosion and to the more general question of whether or not
ionospheric gravity waves are likely to be useful for detecting small,

low-altitude nuclear explosions at great distances from the burst. We
have made the necessary calculations and have obtained good agreement with

the data - the first time such agreement has been obtained from a theore-
tical calculation. The calculated gravity wave signal agrees with obser-
vation in magnitude, scales correctly with observation distance(i.e., its

period increases linearly with distance, it maximum amplitude decreases as
1/R) and with yield (i.e., its period independent of yield and the ampli-

tude proportional to yield),

6'
In the semiannual report we presented the results of the

generation of ionospheric gravity waves by the high altitude hot spot

above a low altitude nuclear explosion; that work primarily considered

waves traveling in the ducted modes. In the present report we have calcu-

lated the generation of gravity waves by the blast wave and by the rising
fireball. In this work we have considered isothermal atmospheres and so

have only freely propagating modes (the coupling of the blast wave to the

ducted gravity modes in a two layer atmosphere was calculated in Reference

7).
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On the basis of our research we have reached the following

conclusions: 1) the major source of the large amplitude ionospheric

gravity wave observed following the U.S. and Soviet tests (the wave with

periods ranging from 30 minutes to more than two hours is the blast wave

and the energy is transmitted by the freely propagating modes; 2) the

source of the 15 minute period wave that were observed to go all the way

around the world is the high altitude hot spot and the energy is traveling

in the ducted modes; 3) the motions associated with the rising fireball

give a smaller signal in the freely propagating modes than the blast wave;

4) it appears that ionospheric observations will be of limited use in

detecting small (>lOkT) low altitude detonations at large distances

(>1000km) from the burst.
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APPENDIX A

TIME INTEGRATION IN THE STATIONARY PHASE

In this appendix we illustrate the failure of the stationary

phase in reproducing exactly the relation

d = fdt V(t) (A-i)

from the stationary phase evaluation of the integrals

V = fdo, F(,.) ei(ut-kr) (A-2)

d = fdw F(w) ei(t-kr) (A-3)

To illustrate the source of the problem we assume a simple dispersion

relation:

W2 = m2+k 2c 2  (A-4)

Then the stationary point is obtained by solving

o* ct- 2 . r (A-5)

which gives:

mtc
, - tc> r (A-6)

/t 2c2 r 2
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and no solution exists for tc< r.

The stationary phase evalution of the integral requires

a2 m2 r (c 2 t2-r 2)3/ 2  (A-7)
a3 .= (k.S c(w2-m2)3/2  mr2 c

and

k = mr/c (A-8)
/t2c2-r2

s =M(t 
2_r 2/c2 )1/2/C (A-9)

The stationary phase approximation then gives:

V =~ ] F(w ) e (A-10)
s 2mr2 r s

d = C2 [~crI e/ / ~i) iO (A-11)
s 2nir W i

To carry out the comparison further, we now choose the form of the
function F(LL). In particular. we take

F [(tCjr2)3/, 1 / c (A-12)
2mr 27F

Thus

V5  ce i (A-i13)
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d --- 2 e S (A-14)

s 1 t

To check we evaluate

dds = ce s[i+ r2  V

dt i sc 2t 2 s

The second term in (A-15) is different from zero for all finite times

t>r/c and indicates the magnitude of the error. To improve the agreement

between fVsdt and ds it is necessary to include higher order

corrections to the stationary phase. Though possible, this becomes

quickly impractical, in particular for a complicated dispersion relation

of the type needed to analyze the gravity waves.

The result of this appendix indicates that the use of stationary

phase in the analysis of the gravity waves is somewhat questionable if a

detailed behavior of the atmospheric motion is to be derived. Our main

hope is that, at best, the stationary phase is capable of providing

qualitative information about general trends, maximum displacement and

other gross features of the physics following an atmospheric burst. It is

interesting to note that at t 2 >>r 2 /c 2 .

imt c imtVs e dsm T6 e

and the stationary phase is exact. It therefore seems reasonable to

conjecture that the stationary phase becomes exact as ust>>kr since us

approaches a constant at large t and it is possible to satisfy this

condition.
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APPENDIX B

GRAVITY WAVES IN TWO-LAYER ATMOSPHERE

We now wish to consider the gravity wave response propagating

through the freely propagating modes in a two layer atmosphere. We

choose, arbitrarily, z=O as the altitude of the discontinuity. In each

layer, the eigenvectors I lu,a> given in Equation (2-12) are solutions. We

denote by I ,a>l the solution in the lower layer and by L,a>2 the

solution in the upper layer. For a disturbance originating below z=O,

there will be an upwardly propagating wave w ,a>l and a reflected wave

w,-a>i in the lower layer. In the upper layer, only the outwardly

propagating wave occurs. Thus the general solution in a two layer

atmosphere is:

w,a> = A lu,a>l + B I w,-a>1 z<O

(B-i)

= C U,a>2 z>O

In terms of the coefficients defined in Section 2, the matching conditions

at z=O

cia2Z=O" = c2a2.z=O+ (B-2)

(al + I a)/z.o_ = (a, + 1 a4)/Z.O+ (B-3)

y-1 y-1

imply:

A+B-C (B-4)
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AIa)BIal+A+B P4(a1 ) = C(PI(a 2)+ 1P4(a2')) (B-5)
Y-1 Y-1

Here aij is used to denote the wave propagating below (i~l) and above
(i=2) z=O, Pj(w,a) are defined in Section 2B.

find: The matching conditions are readily solved for A/C, B/C and we

A/C = [PI(a 2)-P1 (-al)+ -(P4(a 2) -P4(aj))]/(Pj(aj)-P 1 (-aj)) (B-6)
Y- 1

B/C = -P~2-la) (P4(a 2) -P4(aj))j/(P 1(aj)-P1 (-aj)) (B-7)
y- 1

and the normalization requires

A 12 + IB!12 + IC12 =1(B-8)

These coefficients together with (B-i) provide a complete set of states

and we can write:

I f(t)> =fd(4dalw,a> <wA,ajf(O)>e 1i Ut (B-9)

and we can carry out calculations as in Section 2.
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